On system of generalized vector variational inequalities

S. H. Hou • H. Yu • G. Y. Chen

Received: 17 October 2006 / Accepted: 25 October 2006 / Published online: 6 December 2006 © Springer Science+Business Media B.V. 2006

Abstract

In this paper, we introduce a new system of generalized vector variational inequalities with variable preference. This extends the model of system of generalized variational inequalities due to Pang and Konnov independently as well as system of vector equilibrium problems due to Ansari, Schaible and Yao. We establish existence of solutions to the new system under weaker conditions that include a new partial diagonally convexity and a weaker notion than continuity. As applications, we derive existence results for both systems of vector variational-like inequalities and vector optimization problems with variable preference.

Keywords Generalized vector variational inequalities • Partial diagonally quasiconvexity • Variational-like inequalities • Variable preference

1 Introduction

In [16] Pang introduced a system of (scalar) variational inequalities (specifically, an asymmetric variational inequality problems over product sets) which could uniformly model several equilibrium problems such as traffic equilibrium problems, spatial equilibrium problems, Nash equilibrium problems and equilibrium programming problems, etc. Pang [16] and subsequently Cohen and Chaplais [9] studied the computation of this model, while existence results were established by Bianchi [6] as well as

[^0]Ansari and Yao [1]. Further developments on this problem are discussed, for example, in Konnov [13], where system of generalized variational inequalities was tackled in order to solve vector optimization problem, and in Ansari and Yao [3] where existence result for system of generalized inequalities was established. Moreover, Ansari et al. [4] studied the system of vector equilibrium problems that includes, as special case, the system of vector variational inequalities that is the vector generalization of the system of scalar variational inequalities.

In this paper, we introduce systems of weak and strong vector variational inequalities with variable preference. These not only include all the above-mentioned system models as special cases, but also could be considered as a systematic generalization of existing models for vector variational inequalities with variable preference (see [5,10] and references therein) and vector equilibrium problem with variable preference (see [$7,8,11,14,15,17,18]$ and references therein).

Throughout this paper, we denote by $\operatorname{co} A$, int A the convex hull and the interior of a set A in a topological vector space, respectively.

Let I be a given index set. For each $i \in I$, let X_{i} and Y_{i} be nonempty subsets of two locally convex Hausdorff topological spaces, and E_{i} be a Hausdorff topological vector space. We also write

$$
X=\prod_{i \in I} X_{i}, \quad Y=\prod_{i \in I} Y_{i} \quad \text { and } \quad E=\prod_{i \in I} E_{i} .
$$

An element of the set $X^{i}:=\prod_{j \in I \backslash\{i\}} X_{j}$ will be denoted by x^{i}. Thus, we can write $x=\left(x^{i}, x_{i}\right) \in X^{i} \times X_{i}=X$ for all $x \in X$. Let $\left\{f_{i}\right\}_{i \in I}$ be a family of trifunctions defined on $X \times X_{i} \times Y_{i}$ with values in E_{i}. Let $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ and $T_{i}: X \rightarrow 2^{Y_{i}}$ be set-valued maps.

We consider the following two system models:
(1) The system of weak generalized vector variational inequality problem, in short SWGVVI, is to find $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}\left(\bar{x}_{i}\right)$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right) \quad \forall z_{i} \in X_{i} .
$$

(2) The system of strong generalized vector variational inequality problem, in short SSGVVI, is to find $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}\left(\bar{x}_{i}\right)$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \in C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

The rest of the paper is organized as follows. In Sect. 2, we give a short account of set-valued maps and their properties. In particular, we introduce the new concept of partial diagonally quasi-convexity together with its relationship to other convexity properties. In Sect. 3, the existence results of SWGVVI and SSGVVI are established. Finally, we conclude with some applications in Sect. 4.

2 Preliminaries

Definition 2.1 A set-valued map $F: X \rightarrow 2^{Y}$ is said to have open lower sections if the set $F^{-1}(y):=\{x \in X: y \in F(x)\}$ is open in X for every $y \in Y$.

Lemma 2.1 (Ansari [2]) Let X be a topological space and Y be a convex subset of a topological vector space. Let $G: X \rightarrow 2^{Y}$ be a set-valued map with open lower sections.

Then the set-valued map $M: X \rightarrow 2^{Y}$, defined by $M(x):=\operatorname{co}(G(x))$ for all $x \in X$, has open lower sections.

Lemma 2.2 (Klein and Thompson [12], Theorem 8.1.3, p. 97) Let X be a compact Hausdorff space and let $f: X \rightarrow 2^{Y}$ be a set-valued map from X to a topological vector space Y with convex values. Suppose further that f has open lower sections. Then f has a continuous selection.

Remark 2.1 The proof of Lemma 2.2 given in [12] can be modified to hold even for X paracompact.

We mention also here the well known Kakutani-Fan's fixed point theorem.
Lemma 2.3 Let X be a nonempty compact convex subset of a locally convex Hausdorff topological vector space E. Suppose that $H: X \rightarrow 2^{X}$ is a upper semi-continuous set-valued map with nonempty closed convex values. Then H has a fixed point in X.

We now introduce the following new notion of partial quasi-convexity property which plays a crucial role in our analysis and discussion below.

Definition 2.2 Let $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ and $g: X \times X_{i} \rightarrow E_{i}$ be given. $g\left(x, z_{i}\right)$ is said to be weak (resp. strong) partial diagonally quasi-convex in z_{i} with respect to C_{i} if for any $\Lambda=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\}$ in X_{i} and for any $x=\left(x^{i}, x_{i}\right) \in X$ with $x_{i} \in \operatorname{co} \Lambda$, there exists a $j \in\{1,2, \ldots, n\}$ such that

$$
g\left(x, x_{i_{j}}\right) \notin-\operatorname{int} C_{i}\left(x_{i}\right), \quad\left(\text { resp. } g\left(x, x_{i_{j}}\right) \in C_{i}\left(x_{i}\right)\right) .
$$

Remark 2.2 When $I=\{1\}, X_{1}=X, C_{1}(x)=\mathbb{R}^{+}$for each $x \in X$, and $g: X \times X \rightarrow \mathbb{R}$ is a single-valued function, then the above two kinds of partial diagonally quasi-convexity all reduce to 0 -diagonally quasi-convexity for scalar functions in Zhou and Chen [19].

Remark 2.3 Strong partial diagonally quasi-convexity with respect to C_{i} implies weak partial diagonally quasi-convexity with respect to C_{i} if for all $x_{i} \in X_{i}, C_{i}\left(x_{i}\right)$ is a pointed cone with int $C\left(x_{i}\right) \neq \emptyset$.

3 Existence results

We are now ready to prove the following existence results of solutions for SWGVVI.
Theorem 3.1 For each $i \in I$, let X_{i} and Y_{i} be nonempty compact convex metrizable subsets of two locally convex Hausdorff topological vector spaces, and E_{i} be a Hausdorff topological vector space. Let $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$ be a trifunction, $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map with int $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$, and $T_{i}: X \rightarrow 2^{Y_{i}}$ be a upper semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.
(1) For each $i \in I$ and for each $y_{i} \in Y_{i}$, the function $f_{i}\left(x, z_{i}, y_{i}\right)$ is weak partial diagonally quasi-convex in z_{i} with respect to C_{i}.
(2) For each $i \in I$ and $z_{i} \in X_{i}$, the set

$$
\left\{\left(x, y_{i}\right) \in X \times Y_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}
$$

is open.

Then, there exist $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

Proof Define, for each $i \in I$, a set valued map $P_{i}: X \times Y_{i} \rightarrow 2^{X_{i}}$ by

$$
P_{i}\left(x, y_{i}\right):=\left\{z_{i} \in X_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}, \quad \forall\left(x, y_{i}\right) \in X \times Y_{i} .
$$

By condition (2), P_{i} has open lower sections and so does the set-valued map $\varphi_{i}: X \times$ $Y_{i} \rightarrow 2^{X_{i}}$ with

$$
\varphi_{i}\left(x, y_{i}\right):=\operatorname{co} P_{i}\left(x, y_{i}\right), \quad \forall\left(x, y_{i}\right) \in X \times Y_{i} .
$$

Let

$$
W_{i}:=\left\{\left(x, y_{i}\right) \in X \times Y_{i}: \varphi_{i}\left(x, y_{i}\right) \neq \emptyset\right\} .
$$

The fact that φ_{i} has open lower sections implies W_{i} is open. Moreover, since X and Y_{i} are metrizable spaces, W_{i} is paracompact. The restriction of φ_{i} to W_{i} has nonempty convex values and open lower sections. It follows from Lemma 2.2 and Remark 2.1 that there exists a continuous selection $s_{i}: W_{i} \rightarrow X_{i}$ such that $s_{i}\left(x, y_{i}\right) \in \varphi_{i}\left(x, y_{i}\right)$ for all $\left(x, y_{i}\right) \in X \times Y_{i}$.

Define $\Gamma_{i}: X \times Y_{i} \rightarrow 2^{X_{i}}$ by

$$
\Gamma_{i}\left(x, y_{i}\right)= \begin{cases}s_{i}\left(x, y_{i}\right), & \forall\left(x, y_{i}\right) \in W_{i}, \\ X_{i}, & \forall\left(x, y_{i}\right) \notin W_{i} .\end{cases}
$$

It is easy to show that Γ_{i} has closed graph in $X \times Y_{i} \times X_{i}$, and therefore upper semi-continuous as X_{i} is compact. Let $\Gamma: X \times Y \rightarrow 2^{X \times Y}$ be defined by

$$
\Gamma(x, y):=\left(\prod_{i \in I} \Gamma_{i}\left(x, y_{i}\right), \prod_{i \in I} T_{i}(x)\right), \quad \forall(x, y) \in X \times Y .
$$

Then Γ is upper semi-continuous. Since for each $(x, y) \in X \times Y, \Gamma(x, y)$ is nonempty, convex and closed, thus by Kakutani-Fan's fixed point theorem there exists $(\bar{x}, \bar{y}) \in X \times Y$ such that $(\bar{x}, \bar{y}) \in \Gamma(\bar{x}, \bar{y})$, i.e. for each $i \in I, \bar{x}_{i} \in \Gamma_{i}\left(\bar{x}, \bar{y}_{i}\right)$ and $\bar{y}_{i} \in T_{i}(\bar{x})$.

Note that for each $i \in I$, if $\left(\bar{x}, \bar{y}_{i}\right) \in W_{i}$, then

$$
\bar{x}_{i}=s_{i}\left(\bar{x}, \bar{y}_{i}\right) \in \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)=\operatorname{co}\left(P_{i}\left(\bar{x}, \bar{y}_{i}\right)\right) .
$$

Thus there exists a finite subset

$$
\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\} \subset P_{i}\left(\bar{x}, \bar{y}_{i}\right)
$$

such that

$$
\bar{x}_{i} \in \operatorname{co}\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\}
$$

and

$$
f_{i}\left(\bar{x}, x_{i j}, \bar{y}_{i}\right) \in-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall j=1,2, \ldots, n .
$$

This is a contradiction to (1). Hence $\left(\bar{x}, \bar{y}_{i}\right) \notin W_{i}$ and so for all $i \in I, \varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)=\emptyset$. Therefore, $\operatorname{co}\left(P_{i}\left(\bar{x}, \bar{y}_{i}\right)\right)=\emptyset$ which implies $P_{i}\left(\bar{x}, \bar{y}_{i}\right)=\emptyset$. Consequently, we have $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

We conclude that SWGVVI has a solution, and this completes the proof.

Remark 3.1

(1) Contrary to most other papers, it is noted that we do not require the sets $C_{i}\left(x_{i}\right)$ to be a cone in the present paper.
(2) Note that if for each $i \in I$, the function f_{i} is continuous and the set-valued map $W_{i}: X_{i} \rightarrow 2^{E_{i}}$, defined by $W_{i}\left(x_{i}\right):=Y_{i} \backslash\left\{-\operatorname{int} C_{i}\left(x_{i}\right)\right\}$, is upper semi-continuous, then the set $\left.\left\{\left(x, y_{i}\right) \in X \times Y_{i}\right): f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}$ is open for all $z_{i} \in X_{i}$ (see Zhou and Chen [19]).

Remark 3.2 The following example shows that without the partial diagonally quasiconvexity property of the function $f_{i}\left(x, z_{i}, y_{i}\right)$ the corresponding SWGVVI problem may not admit a solution.
Example Let the index set be $I=\{1,2\}$. For each $i \in I$, let $Y_{i}=\{y\}$ be a single point in \mathbb{R}, and $E_{i}=X_{i}=\mathbb{R}$ so that $X=\mathbb{R}^{2}$. Further, for each $i \in I$ and for all $x_{i} \in X_{i}$, let $C_{i}\left(x_{i}\right)=[0,+\infty)$ and $T_{i}(x)=\{y\}$ for all $x \in X$. The functions $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$, defined by

$$
f_{i}\left(x, z_{i}, y\right)=-\left(\sum_{j=1, j \neq i}^{2} x_{j}-y\right)^{2}+\left(x_{i}-z_{i}\right)-1, \quad i=1,2
$$

satisfy all the hypothesis of Theorem 3.1 except for the partial diagonally quasiconvexity property. It is not difficult to see that the corresponding SWGVVI problem has no solutions.

Corollary 3.1 For each $i \in I$, let X_{i} and Y_{i} be nonempty compact convex metrizable subsets of two locally convex Hausdorff topological vector spaces, and E_{i} be a Hausdorff topological vector space. Let $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$ be a trifunction and $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map with int $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$, and let $T_{i}: X \rightarrow 2^{Y_{i}}$ be a upper semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.
(1) For each $i \in I$, for all $x \in X$ and $y_{i} \in Y_{i}$, the set $\left\{z_{i} \in X_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}$ is convex.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the $\operatorname{set}\left\{\left(x, y_{i}\right) \in X \times Y_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}$ is open.
(3) For all $x=\left(x^{i}, x_{i}\right) \in X$ and $y_{i} \in Y_{i}, f\left(x, x_{i}, y_{i}\right) \notin-\operatorname{int} C\left(x_{i}\right)$.

Then, there exists $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

Proof Fix $i \in I$ and $y_{i} \in Y_{i}$. We need only to show that $f_{i}\left(x, z_{i}, y_{i}\right)$ is weak partial diagonally quasi-convex in z_{i} with respect to C_{i}. Suppose not, then there exist $\Lambda=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\} \subset X_{i}$ and $\bar{x}=\left(\bar{x}^{i}, \bar{x}_{i}\right) \in X$ with $\bar{x}_{i} \in \operatorname{co} \Lambda$ such that

$$
f_{i}\left(\bar{x}, x_{i j}, y_{i}\right) \in-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall j=1,2, \ldots, n
$$

Therefore,

$$
x_{i_{j}} \in\left\{z_{i} \in X_{i}: f_{i}\left(\bar{x}, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(\bar{x}_{i}\right)\right\}:=U_{i}, \quad \forall j=1,2, \ldots, n
$$

By condition (1), the set U_{i} is convex, and so $\bar{x}_{i} \in U_{i}$, i.e.

$$
f\left(\bar{x}, \bar{x}_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(\bar{x}_{i}\right),
$$

which is a contradiction to (3). The corollary is proved.

Remark 3.3 Condition (3) of Corollary 3.1 is satisfied, for example, if for all $x=$ $\left(x^{i}, x_{i}\right) \in X$ and $y_{i} \in Y_{i}, f\left(x, x_{i}, y_{i}\right)=0$.

Theorem 3.2 For each $i \in I$, let X_{i} and Y_{i} be nonempty metrizable subsets of two locally convex Hausdorff topological vector spaces, and E_{i} be a Hausdorff topological space. Let $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$ be a trifunction, $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map with int $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$, and $T_{i}: X \rightarrow 2^{Y_{i}}$ be a upper semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.
(1) For each $i \in I$ and for all $y_{i} \in Y_{i}, f_{i}\left(x, z_{i}, y_{i}\right)$ is weak partial diagonally quasi-convex in z_{i} with respect to C_{i}.
For each $i \in I$ and for all $z_{i} \in X_{i}$, the set

$$
\left\{\left(x, y_{i}\right) \in X \times Y_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right)\right\}
$$

is open.
(2) For each $i \in I$, there exist a nonempty compact convex subset K_{i} of X_{i} and $\bar{z}_{i} \in K_{i}$ such that for each $x \in X \backslash K:=X \backslash\left(\prod_{i \in I} K_{i}\right)$,

$$
f_{i}\left(x, \bar{z}_{i}, y_{i}\right) \in-\operatorname{int} C_{i}\left(x_{i}\right), \quad \forall y_{i} \in T_{i}(x)
$$

Then, there exist $\bar{x} \in K$, and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

Proof For each $i \in I$ and for all $z_{i} \in X_{i}$, let

$$
G\left(z_{i}\right):=\left\{x \in K: f_{i}\left(x, z_{i}, y_{i}\right) \notin-\operatorname{int} C_{i}\left(x_{i}\right) \text { for some } y_{i} \in T_{i}(x)\right\} .
$$

We verify first that for each $i \in I, G\left(z_{i}\right)$ is closed for all $z_{i} \in X_{i}$. Indeed, let $x(\lambda)$ be a net in $G\left(z_{i}\right)$ such that $x(\lambda) \rightarrow x^{*} \in X$, that is, for each $i \in I, x(\lambda)_{i} \rightarrow x_{i}^{*} \in X_{i}$. Then there exists $y(\lambda)_{i} \in T_{i}(x(\lambda))$ satisfying

$$
f_{i}\left(x(\lambda), z_{i}, y_{i}(\lambda)\right) \notin-\operatorname{int} C_{i}(x(\lambda)) .
$$

Since K is compact and T_{i} is upper semi-continuous, $T_{i}(K)$ is therefore compact. Thus we may assume, by passing to a subnet if necessarily, that $y(\lambda)_{i}$ converges with limit y_{i}^{*}. Since T_{i} is upper semi-continuous and therefore has closed graph, we have $y_{i}^{*} \in T_{i}\left(x^{*}\right)$. By condition (2), we have $f_{i}\left(x^{*}, z_{i}, y_{i}^{*}\right) \notin-\operatorname{int} C_{i}\left(x_{i}^{*}\right)$. Hence $x^{*} \in G\left(z_{i}\right)$, proving that $G\left(z_{i}\right)$ is closed in X.

For each $i \in I$, let $\left\{z_{i_{1}}, \ldots, z_{i_{n}}\right\}$ be a finite subset of X_{i}. Let $A_{i}=\operatorname{co}\left(K_{i} \cup\left\{z_{i_{1}}, \ldots, z_{i_{n}}\right\}\right)$. Then for each $i \in I, A_{i}$ is a compact convex metrizable subset. By Theorem 3.1, there exist $\bar{x} \in A$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$ such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in A_{i} .
$$

It follows from condition (3) that $\bar{x} \in K$. In particular, we have

$$
f_{i}\left(\bar{x}, z_{i_{k}}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall k=1,2, \ldots, n
$$

proving $\bar{x} \in \cap_{k=1}^{n} G\left(z_{i_{k}}\right)$. Hence, every finite subfamily of $\left\{G\left(z_{i}\right)\right\}$ has nonempty intersection. K being compact, so for each $i \in I$ we have $\cap_{z_{i} \in X_{i}} G\left(z_{i}\right) \neq \emptyset$. Thus, there exist $\bar{x} \in K$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right) .
$$

This completes the proof of the theorem.

Now we state below existence results of solutions for the system of strong generalized vector variational inequalities.

Theorem 3.3 For each $i \in I$, let X_{i} and Y_{i} be nonempty metrizable subsets of two locally convex Hausdorff topological vector spaces, and E_{i} be a Hausdorff topological vector space. Let $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$ be a trifunction, $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map with $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$, and $T_{i}: X \rightarrow 2^{Y_{i}}$ be a upper semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.
(1) For each $i \in I$ and for all $y_{i} \in Y_{i}, f_{i}\left(x, z_{i}, y_{i}\right)$ is strong partial diagonally quasi-convex in z_{i} with respect to C_{i}.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the set

$$
\left\{\left(x, y_{i}\right) \in X \times Y_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \notin C_{i}\left(x_{i}\right)\right\}
$$

is open.
Then, there exist $\bar{x} \in X$, and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \in C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

Theorem 3.4 For each $i \in I$, let X_{i} and Y_{i} be nonempty metrizable subsets of two locally convex Hausdorff topological vector spaces, and E_{i} be a Hausdorff topological vector space. Let $f_{i}: X \times X_{i} \times Y_{i} \rightarrow E_{i}$ be a trifunction, $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map with $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$, and $T_{i}: X \rightarrow 2^{Y_{i}}$ be a upper semi-continuous map with nonempty closed convex values.

Assume that the following conditions are satisfied.
(1) For each $i \in I$ and for all $y_{i} \in Y_{i}, f_{i}\left(x, z_{i}, y_{i}\right)$ is strong partial diagonally quasi-convex in z_{i} with respect to C_{i}.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the set

$$
\left\{\left(x, y_{i}\right) \in X \times Y_{i}: f_{i}\left(x, z_{i}, y_{i}\right) \notin C_{i}\left(x_{i}\right)\right\}
$$

is open.
(3) For each $i \in I$, there exist a nonempty compact convex subset K_{i} of X_{i} and $\bar{z}_{i} \in K_{i}$ such that, for each $x \in X \backslash K:=X \backslash\left(\prod_{i \in I} K_{i}\right)$

$$
f_{i}\left(x, \bar{z}_{i}, y_{i}\right) \notin C_{i}\left(x_{i}\right), \quad \forall y_{i} \in T_{i}(x) .
$$

Then, there exist $\bar{x} \in K$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
f_{i}\left(\bar{x}, z_{i}, \bar{y}_{i}\right) \in C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

The proof of these two theorems, being similar to those of Theorems 3.1 and 3.2, are omitted.

4 Applications

We now derive some existence results for some of the systems of vector variational inequalities that were considered by others.

Case I System of vector equilibrium problems.
The system of vector equilibrium problems, as introduced by Ansari et al. [4], is to find $\bar{x} \in X$ such that for each $i \in I$

$$
g_{i}\left(\bar{x}, z_{i}\right) \notin-\operatorname{int} C, \quad \forall z_{i} \in X_{i},
$$

where $g_{i}: X \times X_{i} \rightarrow E$ is a given bifunction taking values in a Hausdorff topological vector space E, and C is a nonempty pointed closed convex cone in E with int $C \neq \emptyset$.

Theorem 4.1 For each $i \in I$, let X_{i} be a nonempty compact convex metrizable subset of a locally convex Hausdorff topological space, Z be a Hausdorff topological vector space and $C \subset Z$ be a pointed cone with int $C \neq \emptyset$. Let $g_{i}: X \times X_{i} \rightarrow Z$ be a bifunction. Assume that the following conditions are satisfied.
(1) For each $i \in I, g_{i}\left(x, z_{i}\right)$ is weak partial diagonally quasi-convex in z_{i} with respect to C.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the set $\left\{x \in X: g_{i}\left(x, z_{i}\right) \in-\operatorname{int} C\right\}$ is open.

Then, there exists $\bar{x} \in X$ such that for each $i \in I$,

$$
f_{i}\left(\bar{x}, z_{i}\right) \notin-\operatorname{int} C, \quad \forall z_{i} \in X_{i} .
$$

Proof This follows directly from Theorem 3.1 by setting for each $i \in I, Y_{i}=\{y\}$ a singleton, $E_{i}=Z, C_{i}\left(x_{i}\right)=C$ for all $x_{i} \in X_{i}, T_{i}(x)=\{y\}$ for all $x \in X$, and $f_{i}\left(x, z_{i}, y_{i}\right)=g_{i}\left(x, z_{i}\right)$ for all $\left(x, z_{i}\right) \in X \times X_{i}$.

Remark 4.1 It is easy to see that Theorem 4.1 improves Theorem 2.1 in Ansari et al. [4] under the additional assumptions that each E_{i} is a locally convex space and X_{i} is metrizable. Indeed, we note that:
(1) The conditions (see [4]) that C is a pointed closed convex cone with int $C \neq \emptyset$, for all $x \in X$ the function $z_{i} \mapsto g_{i}\left(x, z_{i}\right)$ is C-quasi-convex together with $g\left(x, x_{i}\right)=0$ for all $x=\left(x^{i}, x_{i}\right)$, imply that $g_{i}\left(x, z_{i}\right)$ is weak partial diagonally quasi-convex in z_{i} with respect to C.
(2) Also when f_{i} is continuous as assumed in [4], it clearly implies that the set $\left\{x \in X: g_{i}\left(x, z_{i}\right) \in-\operatorname{int} C\right\}$ is open for all $z_{i} \in X_{i}$.

Case II System of generalized variational inequalities.
The system of generalized variational inequalities, as studied by Ansari and Yao [3], is to find $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, satisfying

$$
\varphi_{i}\left(\bar{x}_{i}, z_{i}, \bar{y}_{i}\right) \geq 0, \quad \forall z_{i} \in X_{i} .
$$

Here for each $i \in I, T_{i}: X \rightarrow 2^{D_{i}^{*}}$ is a set-valued map where D_{i}^{*} is a nonempty subset of X_{i}^{*}, the topological dual of X_{i}, and $\varphi_{i}: X_{i} \times X_{i} \times D_{i}^{*} \rightarrow \mathbb{R}$ is a real-valued function.

Theorem 4.2 For each $i \in I$, let X_{i} be a nonempty compact convex and metrizable subset of a locally convex Hausdorff topological vector space, D_{i}^{*} be a nonempty compact convex and metrizable subset in X_{i}^{*}, and $T_{i}: X \rightarrow 2^{D_{i}^{*}}$ be a upper semi-continuous set-valued map with nonempty closed convex values. Let $\varphi_{i}: X_{i} \times X_{i} \times D_{i}^{*} \rightarrow I R$ satisfy the following conditions:
(1) For each $i \in I$ and for all $y_{i} \in D_{i}^{*}, \varphi_{i}\left(x_{i}, z_{i}, y_{i}\right)$ is 0 -diagonally convex in z_{i}.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the set

$$
\left\{\left(x_{i}, y_{i}\right) \in X_{i} \times D_{i}^{*}: \varphi_{i}\left(x_{i}, z_{i}, y_{i}\right)<0\right\}
$$

is open.
Then, there exist $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, satisfying

$$
\varphi_{i}\left(\bar{x}_{i}, z_{i}, \bar{y}_{i}\right) \geq 0, \quad \forall z_{i} \in X_{i} .
$$

Proof This follow from Theorem 3.1 by setting for each $i \in I, Y_{i}=D_{i}^{*}, C_{i}\left(x_{i}\right)=\mathbb{R}^{+}$ for all $x_{i} \in X_{i}$, and $f_{i}\left(x, z_{i}, y_{i}\right)=\varphi_{i}\left(x_{i}, z_{i}, y_{i}\right)$. We need only to note that, if for each $i \in I$ and $y_{i} \in D_{i}^{*}, \varphi_{i}\left(x_{i}, z_{i}, y_{i}\right)$ is 0 -diagonally convex in z_{i}, then $f_{i}\left(x, z_{i}, y_{i}\right)$ is weak partial diagonally convex in z_{i} with respect to \mathbb{R}^{+}.

Remark 4.2 Theorem 4.2 improves Theorem 2.1 of Ansari and Yao [3] under the additional assumptions that for each $i \in I, X_{i}$ is metrizable, D_{i}^{*} is compact convex and metrizable, and T_{i} has nonempty closed convex values.

Case III System of generalized vector variational-like inequalities.
For each $i \in I$, let E_{i} be a Hausdorff topological vector space, and let X_{i} and Y_{i} be nonempty subsets of the locally convex Hausdorff topological vector space S_{i} and its dual S_{i}^{*}, respectively. Let $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map, $L\left(S^{i}, E_{i}\right)$ be the space of all continuous linear mappings form S_{i} to E_{i}, and $<L\left(S_{i}, E_{i}\right), S_{i}>$ be a dual system of $L\left(S_{i}, E_{i}\right)$ and S_{i}. Given $\theta_{i}: X \times Y_{i} \rightarrow L\left(S_{i}, E_{i}\right), \eta_{i}: X_{i} \times X_{i} \rightarrow S_{i}$, and a set-valued map $T_{i}: X \rightarrow 2^{Y_{i}}$, the system of weak generalized vector variational-like inequalities is to find $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
\left\langle\theta_{i}\left(\bar{x}, \bar{y}_{i}\right), \eta_{i}\left(z_{i}, \bar{x}_{i}\right)\right\rangle \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i} .
$$

Theorem 4.3 For each $i \in I$, let E_{i} be a Hausdorff topological vector space, and let X_{i}, Y_{i} be nonempty metrizable subsets of the locally convex Hausdorff topological vector space S_{i} and its dual S_{i}^{*}, respectively. Let $C_{i}: X_{i} \rightarrow 2^{E_{i}}$ be a set-valued map such that for all $x_{i} \in X_{i}, C_{i}\left(x_{i}\right)$ is a proper closed convex cone in E_{i} with int $C_{i}\left(x_{i}\right) \neq \emptyset$. Let the set-valued map $T_{i}: X \rightarrow 2^{Y_{i}}$ be upper semi-continuous with nonempty closed convex values.

Assume that the functions $\theta_{i}: X \times Y_{i} \rightarrow L\left(S_{i}, E_{i}\right)$ and $\eta_{i}: X_{i} \times X_{i} \rightarrow S_{i}$ satisfy the following conditions:
(1) For each $i \in I, \eta_{i}: X_{i} \times X_{i} \rightarrow S_{i}$ is affine in the first argument such that $\eta_{i}\left(x_{i}, x_{i}\right)=0$, $\forall x_{i} \in X_{i}$.
(2) For each $i \in I$ and for all $z_{i} \in X_{i}$, the set

$$
\left\{\left(x, y_{i}\right) \in X \times Y_{i}:\left\langle\theta_{i}\left(x, y_{i}\right), \eta_{i}\left(z_{i}, x_{i}\right)\right\rangle \in \operatorname{int} C_{i}\left(x_{i}\right)\right\}
$$

is open.
(3) For each $i \in I$, there exists a nonempty compact convex subset K_{i} of X_{i} and $\bar{z}_{i} \in K_{i}$ such that, for each $x \in X \backslash K:=X \backslash\left(\prod_{i \in I} K_{i}\right)$,

$$
\left\langle\theta_{i}\left(x, y_{i}\right), \eta_{i}\left(\bar{z}_{i}, x_{i}\right)\right\rangle \in-\operatorname{int} C_{i}\left(x_{i}\right), \quad \forall y_{i} \in T_{i}(x)
$$

Then, there exist $\bar{x} \in X$ and $\bar{y}_{i} \in T_{i}(\bar{x})$ for each $i \in I$, such that

$$
\left\langle\theta_{i}\left(\bar{x}, \bar{y}_{i}\right), \eta_{i}\left(z_{i}, \bar{x}_{i}\right)\right\rangle \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall z_{i} \in X_{i}
$$

Proof This result follows from Theorem 3.2 by setting for each $i \in I$,

$$
f_{i}\left(x, z_{i}, y_{i}\right)=\left\langle\theta_{i}\left(x, y_{i}\right), \eta_{i}\left(z_{i}, x_{i}\right)\right\rangle .
$$

Letting $I=\{1\}$ in Theorem 4.3 leads to the existence result of solutions for this generalized vector variational-like inequalities as studied in [5,10].

Corollary 4.1 Let X and Y be nonempty metrizable subsets of the locally convex Hausdorff topological vector space S and its dual S^{*}, respectively. Let E be a Hausdorff topological vector space, and $C: X \rightarrow 2^{E}$ be a set-valued map such that for all $x \in X$, $C(x)$ is a proper closed convex cone in E with int $C(x) \neq \emptyset$. Let the set-valued map $T: X \rightarrow 2^{Y}$ be upper semi-continuous with nonempty closed convex values. Assume the functions $\theta: X \times Y_{i} \rightarrow L(S, E)$ and $\eta: X \times X \rightarrow S$ satisfy the following conditions.
(1) Let $\eta_{i}: X_{i} \times X_{i} \rightarrow S_{i}$ be affine in the first argument such that $\eta_{i}\left(x_{i}, x_{i}\right)=0, \forall x_{i} \in X_{i}$.
(2) For $z \in X$ the set

$$
\left\{(x, y) \in X \times Y_{i}:\left\langle\theta_{i}(x, y), \eta_{i}(z, x)\right\rangle \in \operatorname{int} C_{i}\left(x_{i}\right)\right\}
$$

is open.
(3) There exist a nonempty compact convex subset K of X and $\bar{z} \in K$ such that, for each $x \in X \backslash K$,

$$
\left\langle\theta_{i}(x, y), \eta_{i}(\bar{z}, x)\right\rangle \in-\operatorname{int} C(x), \quad \forall y \in T(x) .
$$

Then, there exist $\bar{x} \in X$ and $\bar{y} \in T(\bar{x})$ such that

$$
\langle\theta(\bar{x}, \bar{y}), \eta(z, \bar{x})\rangle \notin-\operatorname{int} C(\bar{x}), \quad \forall z \in X .
$$

Remark 4.3 Corollary 4.1 improves Theorem 3 of Ansari et al. [5] under the additional assumptions that S is locally convex and T is upper semi-continuous with nonempty closed convex values.

We also have the following result directly.
For each $i \in I$, let $A_{i}: X \rightarrow L\left(X_{i}, Y_{i}\right)$ be a given mapping, where $L\left(X_{i}, Y_{i}\right)$ denotes the space of all continuous linear operators from X_{i} into Y_{i}. The system of vector variational inequalities (SVVI) with variable preference is to find $\bar{x} \in X$ such that for each $i \in I$,

$$
\left\langle A_{i}(\bar{x}), y_{i}-\bar{x}_{i}\right\rangle \notin-\operatorname{int} C_{i}\left(\bar{x}_{i}\right), \quad \forall y_{i} \in X_{i}
$$

Corollary 4.2 For each $i \in I$, let X_{i} be a nonempty convex metrizable subset of a locally convex Hausdorff topological vector space E_{i}, let $A_{i}: X \rightarrow L\left(X_{i}, Y_{i}\right)$ be continuous on X, and let $C_{i}: X_{i} \rightarrow 2^{Y_{i}}$ be a set-valued map such that $C_{i}\left(x_{i}\right)$ is a convex cone with int $C_{i}\left(x_{i}\right) \neq \emptyset$ for all $x_{i} \in X_{i}$. Suppose further that the set-valued map $W_{i}: X_{i} \rightarrow 2^{Y_{i}}$, defined by $W_{i}\left(x_{i}\right):=Y_{i} \backslash-\operatorname{int} C_{i}\left(x_{i}\right)$ for all $x_{i} \in X_{i}$, is upper semi-continuous, and for each $i \in I$ there exists a nonempty compact convex subset K_{i} of X_{i} and $\bar{y}_{i} \in K_{i}$ such that for all $x=\left(x^{i}, x_{i}\right) \in X \backslash K=: X \backslash \prod_{i \in I} K_{i}$,

$$
\left\langle A_{i}(x), \bar{y}_{i}-x_{i}\right\rangle \in-\operatorname{int} C_{i}\left(x_{i}\right)
$$

Then, there exists a solution $\bar{x} \in X$ for SVVI.
Acknowledgments This research was supported by the Research Committee of The Hong Kong Polytechnic University and by National Natural Science Foundation of China(No.70501015).
6) Springer

References

1. Ansari, Q.H., Yao, J.C.: A fixed-point theorem and its application to the system of variational inequalities. Bull. Aust. Math. Soc. 59, 433-442 (1999)
2. Ansari, A.H.: Vector equilibrium problems and vector variational inequalities. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria., pp. 1-15. Kluwer Academic Publishers, Dordrecht (2000)
3. Ansari, Q.H., Yao, J.C.: Systems of generalized inequalities and their applications. Appl. Anal. 76, 203-217 (2000)
4. Ansari, Q.H., Schaible, S., Yao, J.C.: System of vector equilibrium problems and its applications. J. Optim. Theory Appl. 107, 547-557 (2000)
5. Ansari, Q.H., Siddiqi, A.H., Yao, J.C.: Generalized vector variational-like inequalities and their scalarization. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria, pp.1737. Kluwer Academic Publishers, Dordrecht (2000)
6. Bianchi M.: Pseudo P-monotone operators and variational inequalities, Report 6. Istituto di Econometria e Matematica per le Decisioni Economiche Universita Cattolica del Sacro Cuore, Milan, Italy (1993)
7. Chadli, O., Riahi, H.: On generalized vector equilibrium problems. J. Glob. Optim. 18, 3341 (2000)
8. Chen, G.Y. , Hou, S.H. : Existence of solutions for vector variational inequalities. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria., pp. 73-86. Kluwer Academic Publishers, Dordrecht (2000)
9. Cohen, G., Chaplais, F.: Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms. J. Optim. Theory Appl. 59, 369-390 (1988)
10. Ding, X.P., Tarafdar, E.: Generalized vector variational-like inequalities. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria., pp. 113-124. Kluwer Academic Publishers, Dordrecht (2000a)
11. Ding, X.P., Tarafdar, E.: Generalized vector variational-like inequalities with $C_{x}-\eta-$ pseudomonotone set-valued mappings. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria., pp. 125-140. Kluwer Academic Publishers, Dordrecht (2000b)
12. Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley, New York (1984)
13. Konnov, I.V.: On system of variational inequalities. Russ. Math. (Iz. VUZ). 41, 79-88 (1997)
14. Lai, T.C., Yao, J.C.: Existence results for VVIP. Appl. Math. Lett. 9(3), 17-19 (1996)
15. Lee, G.M., Kim, D.S., Lee, B.S.: Generalized vector variational inequality. Appl. Math. Lett. 9(1), 39-42 (1996)
16. Pang, J.S.: Asymmetric variational inequality problems over product sets: applications and iterative methods. Math. Program. 31, 206-219 (1985)
17. Qun, L.: Generalized vector variational-like inequalities. In: Giannessi, G. (ed.) Vector Variational Inequalities and Vector Equilibria., pp. 363-369. Kluwer Academic Publishersm, Dordrecht (2000)
18. Siddiqi, A.H., Ansari, Q.H., Khaliq, A.: On vector variational inequalities. J. Optim. Theory Appl. 84(1), 171-180 (1995)
19. Zhou, J.X., Chen, G.: Diagonal convexity conditions for problems in convex analysis and quasivariational inequalities. J. Math. Anal. Appl. 132, 213-225 (1988)

[^0]: S. H. Hou (\triangle)

 Department of Applied Mathematics, The Hong Kong Polytechnic University Hong Kong, China
 e-mail: mahoush@polyu.edu.hk
 H. Yu

 College of Economics and Business Administration, Chongqing University, Chongqing 400044, China
 G. Y. Chen

 Institute of Systems Science, Chinese Academy of Science, Beijing, China

